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Abstract. Sharing fire engines and crews between fire suppression dispatch zones may help improve the utilisation of

fire suppression resources. Using the Resource Ordering and Status System, the Predictive Services’ Fire Potential
Outlooks and the Rocky Mountain Region Preparedness Levels from 2010 to 2013, we tested a simulation and
optimisation procedure to transfer crews and engines between dispatch zones in Colorado (central United States) and

into Colorado from out-of-state. We used this model to examine how resource transfers may be influenced by assignment
shift length, resource demand prediction accuracy, resource drawdown restrictions and the compounding effects of
resource shortages. Test results show that, in certain years, shortening the crew shift length from 14 days to 4 days doubles

the yearly transport cost. Results also show that improving the accuracy in predicting daily resource demands decreases the
engine and crew transport costs by up to 40%. Other test results show that relaxing resource drawdown restrictions could
decrease resource transport costs and the reliance on out-of-state resources. The model-suggested assignments result in
lower transport costs than did historical assignments.
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Introduction

Over recent decades, fire suppression has played an important

role in protecting natural resources, human lives and properties
from wildland fires in the United States (US). The US Forest
Service (USFS) contained,98%of fires reported between 1970

and 2002 before they grew to exceed 121 ha (,300 acres, a
threshold commonly used to designate escaped fires in the US;
Calkin et al. 2005). However, fuel accumulation, climate change
and expansion of the wildland–urban interface have all con-

tributed to a substantial increase in suppression costs in recent
history. From fiscal year (FY) 1991 through FY 1999, federal
fire expenditures averaged US$1.39 billion per year; since FY

2002, costs have increased to an average of US$3.51 billion per
year (Headwater Economics 2013). In FY 2015, fire suppression
costs comprised over half of the total annual USFS budget,

which was,US$4.8 billion (USDOI and USDA 2015a), and by
2025, fire suppression costs are projected to make up 67% of the
agency’s budget (USDA Forest Service 2015).

Studies show wildfires can significantly affect human popu-
lations and critical watersheds in Colorado (CO; Thompson
et al. 2013; Haas et al. 2015; Liu and Wimberly 2015). Several

fire seasons on the CO Front Range have set state records for the
number of structures burned (Calkin et al. 2014). According to

the 2015 State of Colorado House Joint Resolution, during the
1990s and early 2000s, the annual average area burned has
tripled (State of Colorado 2015). CO’s vulnerabilities to wild-

land fire incentivise the design and implementation of decision
support models to study suppression resource assignments.

Allocating limited suppression resources to fires presents
challenging decision problems (Petrovic et al. 2012; Martell

2015). Past models have been built to determine optimal
seasonal resource stationing and dispatching for initial attack
(IA; e.g. Haight and Fried 2007; Ntaimo et al. 2012, 2013; Lee

et al. 2013; Gallego Arrubla et al. 2014; Wei et al. 2015),
support suppression placement decisions on a single fire (e.g.
Ntaimo et al. 2004; Alexandridis et al. 2011; Wei et al. 2011;

Belval et al. 2015), allocate resources to home bases (Chow and
Regan 2011), protect assets at risk using vehicle speed and road
network data (van der Merwe et al. 2015) and integrate fuel

management and suppression preparedness decisions to maxi-
mise areas covered by suppression resources (Minas et al. 2015).
Each of these models examined an important aspect of fire
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management, but suppression resource sharing has not been
systemically modelled.

In this study, we present a mixed integer program (MIP) to

examine daily assignments of engines and crews for dispatch
zones in CO over a fire season. Historical resource assignments
and forecasts of fire activity provide a basis for ourmodel design

and test cases. A simulation and optimisation procedure assigns
crews and engines to meet predicted next-day suppression
demands at each dispatch zone in CO. Using this method, we

examine how such assignments, and associated transfers of
resources, may be affected by shift length, the accuracy of
resource demand predictions, resource drawdown restrictions
and the compounding effects of resource shortages. We also

compare historical assignments with those suggested by the
model. Our method provides a framework to support a state-
wide decision process for allocating resources and allows us to

examine the effect of several widely implemented fire suppres-
sion policies.

Material and methods

Data used for model parameterisation

CO houses six interagency dispatch centres, located in Craig
(CRC), Durango (DRC), Fort Collins (FTC), Grand Junction
(GJC), Montrose (MTC) and Pueblo (PBC; Fig. 1a). Each dis-
patch centre coordinates IA and resource mobilisation within its

dispatch boundary (PIDC2015).Weused the nameof the dispatch
centre to represent the corresponding dispatch zone. Five of the
dispatch zones are completely within CO. A portion of the PBC

dispatch zone lies in Kansas. In this study, we only considered
fires that originate within CO. Each crew or engine is owned by a
federal or state agency, county, city, contractor or other individual,

and is associated with a home base, the locations of which are
shown in Fig. 1a. During a fire season, resources from outside
CO are crucial in meeting suppression needs in CO, particularly
during times of high resource demand.We treated any engine or

crewmoving into CO as though they were from a single external
dispatch zone.

The Predictive Services (PS) program was developed in the

US to support suppression resource allocation decisions, includ-
ing providing predictions of significant fire activity (Predictive
Services 2016). PS issues the 7-day climate- and weather-based

Significant Fire Potential Outlook (a.k.a. 7-Day Outlook) on
weekdays during the fire season for Predictive Service Areas
(PSAs; Owen et al. 2012). Fig. 1b shows the PSAs within CO.

A 7-Day Outlook value of 1 indicates ‘moist’, 2 indicates ‘dry’
and 3 indicates ‘very dry’ fuel conditions; values 4–9 are not
scaled and indicate elevated fire potential due to factors such as
lightning and atmospheric instability. A study by Riley et al.

(2015) for the North-west and South-west Geographic Coordi-
nation Areas found that the 7-Day Outlook values are useful
predictors of fire ignitions, fire escapes and large fire activities.

We incorporated PS Outlook values into our analysis using
regression models to predict zone-specific, next-day engine and
crew demands.

The National Interagency Resource Ordering and Status
System (ROSS), a database-driven dispatching program, is
chartered by the National Wildfire Coordinating Group. ROSS
supports resource mobilisation in ,400 interagency dispatch

and coordination offices throughout the nation, including CO,

by tracking resource requests and dispatching activities. Histor-
ically, ROSS was routinely used for fires that requested sup-
pression resources beyond the local resource owner, for
example, a national forest. IA activities involving only local

suppression resources may not be reflected in historical ROSS
records. Thus, ROSS data are appropriate for use in analyses
examining interagency and interregional collaboration during

suppression. Although ROSS does not include all fires in CO, it
houses the most complete set of information on assignments
involving multiple agencies and dispatch zones (NIFC 2016).

We used ROSS records from 2010 to 2013, which include
archived resource use information for 1036 fires in CO. For
comparison, the Fire Occurrence Database (Short 2015) has
records on 8721 fires in COduring this period,most of which did

not require suppression resource assignments between multiple
agencies and zones. The locations of the fires from ROSS are
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Fig. 1. Maps showing (a) the six dispatch zones in Colorado (CO) and the

locations of suppression resource home bases (Craig, CRC; Durango, DRC;

Fort Collins, FTC; Grand Junction, GJC; Montrose, MTC; Pueblo, PBC);

(b) Predictive ServiceAreas (PSAs) inCO in 2013 and theResourceOrdering

and Status System (ROSS) fire ignition locations from 2010 to 2013.
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shown in Fig. 1b.We used the numbers of engines and crews that
were assigned to all fires within a dispatch zone from ROSS
records as the actual fire suppression demand on each day.

Following the mobilisation guides of the Arapaho-Roosevelt
National Forest and Pawnee National Grassland (2015) and the
Montrose Interagency Dispatch Center (2015), we defined the

core fire season in CO to be from the 135th day of each year
(14 or 15May) to the 284th day of each year (10 or 11 October);
consequently, we only examined assignments during this period.

We modelled two categories of resources: crews and engines.
Crews are groups of 18–20 firefighters who work as a team
(NIFC 2016). Engines are tanked vehicles with specific pump-
ing, tank capacity and crew requirements; these are classified as

Type 1–7 (NIFC 2016). Because crews and engines are often
dispatched under different geographic conditions (e.g. slope,
roads and terrain), fire intensities and fuel types, and because

past research is lacking in quantifying the potential substitution
between the two resource types, we did not model any substitu-
tion between crews and engines.

Our model minimised the daily engine and crew transport
costs incurred inCO.We used the geodesic distancemeasured in
degrees between the centroids of each pair of dispatch zones to

approximate the average transport cost for moving resources
between zones (http://support.esri.com/en/knowledgebase/
Gisdictionary/term/geodesic [Verified 6 October 2016]). These
distances ranged from 1.018–4.998 for the six zones (18 is

,110 km). For out-of-state resources, we arbitrarily assumed
the transport distancewas 6 degrees; this assumption guaranteed
that the model would use all available resources in CO before

calling on out-of-state resources. For resources assigned within
a dispatch zone, we assumed the transport cost was half of the
distance to the centroid of its closest adjacent dispatch zone; this

incentivised the model to first use resources that are already
within the dispatch zone in which the fire ignited. In future
studies, the travel distances for resources from out-of-state
locations or within each zone could be more precisely specified

for better bookkeeping, but it would not influence the resource
assignment decisions made by our model. The costs to move
each resource between zones and to move out-of-state resources

into CO were held constant for all model runs. Because of these
assumptions, the model reported transport costs do not reflect
real world costs; rather we compare the relative costs to examine

the differences in assignments between model runs.

Prediction of the next-day resource demands

The simulation and optimisation procedure requires prediction
of the next-day engine and crew demands from all dispatch
zones to guide resourcemovement. Factors influencing resource
demands are complicated and may include weather, vegetation,

nearby housing, new and ongoing fire activity, fuel conditions,
and resource commitment and availability (NMAC 2008;
Preisler et al. 2011; Hand et al. 2016). Some of these data are

available in real time; others also rely on predictions. In this
paper, we used ROSS data to build linear regression models to
predict the next-day engine and crew demands for each zone.

The details of these regression models are explained in the
online supplementary material. Predicting suppression resource
demands is a challenging task because of the stochasticity
of wildland fire occurrence, wildland fires’ various social,

economic and ecological effects on human and natural systems,
and the complexity and uncertainty inherent in the fire sup-
pression decision making process. The regression models used

in our work provide predictions required by the simulation and
optimisation procedure to study the effect of imperfect predic-
tion of next-day resource demands; these models could be

enhanced through further studies.

Resource shift length

According to the Interagency Standards for Fire and Fire

Aviation Operations (USDOI and USDA 2015b), assignments
of suppression resources to incidents usually will not exceed
14 days. Additional documentation, approval and justification

are required for any assignment that exceeds 14 days, and
assignments for non-military resources cannot exceed 21 days.
An engine or crew can be transferred from one dispatch zone to

another as needed before the end of its shift. For our study,
we used 14 days as the default shift length for which each crew
or engine could be assigned before that resource had to return
to its home zone. For comparison, we tested an alternative

4-day shift length, which is approximately the average historical
shift length of crews and engines from 2010 to 2013 from ROSS
data.

Drawdown levels and resource availability

Fire managers in the US often use the Preparedness Level (PL)
to assist with resource assignment decisions. The PL is a scaled,
numeric value between 1 and 5 that is determined by fuel and

weather conditions, fire activity and resource availability
(NMAC 2015); a PL of 1 indicates low fire activity and high
resource availability, whereas a PL of 5 indicates high fire

activity and low resource availability. PLs are available at the
national and regional level, and each dispatch centre may
determine a local PL, which can differ from the regional PL.
Individual dispatch centres typically have mobilisation plans to

guide resource deployment decisions within that centre’s dis-
patch zone for each PL. We were unable to collect the historical
daily local PL records in each dispatch zone for this study;

instead we used the historical PL data from the RockyMountain
Area Coordination Center (RMACC) to approximate resource
scarcity. RMACC is responsible for the coordination of sup-

pression resources in CO, Wyoming, South Dakota, Kansas and
Nebraska.

We assumed themaximum number of engines and crews that

have been assigned to fires from each dispatch zone historically
is the total number of engines and crews available for dispatch
from that zone (see Table 1). During a fire season, some engines
and crews may be held in their home bases for IA assignments;

this predetermined number of reserved resources is often
referred to in the US as the ‘drawdown’ level. Resources held
for drawdown are typically unavailable for use outside their

local areas (NIFC 2016). Determining appropriate drawdown
levels is a complex task (Martell et al. 1998). In this study, we
modelled drawdown restrictions based on historical records of

resource assignments at each PL. Table 1 shows the maximum
number of engines or crews that were ever dispatched to fires
outside their home zones at each PL by dispatch zone. We used
these records to set the upper bound on the number of resources
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that may be dispatched from each home zone to fires outside of
each zone across all PLs (Table 1).We createdmodel constraints
to ensure that more resources are held in each home zone as the

PL increases. The resources reserved for drawdown may be
dispatched to any fire occurring within a home zone. To test
the effect of these drawdown restrictions, we used an allowable

drawdown level (ADL) multiplier, which ranged from 0 to 3.
The ADL multiplier was multiplied by the upper bound on the
number of engines or crews that could be dispatched out of their

home zones at each PL (in Table 1) to create a range of
alternative drawdown restriction levels. For example, if the
ADL multiplier is set to 0, no resources may be shared between
dispatch zones; if it is set to 1, the model uses the drawdown

restriction levels directly from Table 1. Finally, if the ADL
multiplier is set to 3, three times the number of resources in
Table 1 may be shared between zones.

A resource assignment and transfer model for CO

We used an MIP network model to optimise daily resource
assignments within and between zones in CO. Nodes in the
network allow the model to track the number of resources

available in each dispatch zone each day. Arcs are used to track
the resource transfers between zones in CO and into a zone in
CO from outside the state. Our MIP model minimises the

resource movement distances (an approximation of transport
cost) for the assignment and transfer of engines and crews in fire
day t to meet the resource demand for fire suppression in day

(tþ1). Fig. 2 shows a diagram for an example network with two
in-state dispatch zones and a single out-of-state zone. The
indices, parameters and decision variables used to present this

model are shown in Table 2. This model is run iteratively for
each day through a fire season.

The simulation and optimisation procedure

(1) Set t¼ 0; set the number of resources deployed to fires from
home zone h to fire zone i to zero; set the initial resource

shortage in each zone i to zero; set the number of resources
with assignment length that have already reached the
maximum shift length to zero:

at¼0; h;i;r ¼ 0 8h; i 6¼ 0; r ð1:1Þ

st¼0; i;r ¼ 0 8i 6¼ 0; r ð1:2Þ

et¼0;h;i;r ¼ 0 8h; i 6¼ 0; r ð1:3Þ
Set a0t¼0,h,r equal to the total number of resources r based in zone

h (no resources have been dispatched to any fire yet).
(2) Run the MIP model for day t to find the most inexpensive

way to assign resources to meet the predicted resource

demand ptþ1,i,r for the next day in each zone. The MIP
model formulation is as follows:

min
t
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Fig. 2. A diagram to demonstrate the mixed integer program (MIP) model formulation for a state with two

home dispatch zones (h ¼ 1 and h ¼ 2) and one out-of-state zone (h ¼ 0); this shows the network model

structure that is used to track how type r resources could be transferred on fire day t to meet the resource

demands on day (tþ1) in different zones (t is omitted in the subscript of all decisionvariables in this diagram).The

arrow represents the resource transfer direction; IA is initial attack.

Table 2. Indices, decision variables and model parameters of the mixed integer program (MIP)

The denotations are used in themodel to represent the dispatch of resources on fire day t tomeet suppression resource demands in each dispatch zone on day tþ1

Indices

h; i; j Indices of dispatch zones; h indicates the home zone of a resource (h ¼ 0 indicates a resource comes from outside Colorado (CO)),

i indicates the dispatch zone from which a resource transfers, and j indicates the dispatch zone into which a resource transfers

r Index of resource type; e.g. crew or engine

t Index of day; t denotes the current day; tþ1 denotes the next day

Decision variables

Atþ1;h; i; r Number of type r resources from home zone h that would be used for fire suppression in zone i in day tþ1; with h¼ 0, Atþ1;h¼0; i 6¼0; r

tracks the number of resources from outside CO

A0
tþ1;h; r Number of type r resources that would not be dispatched to any fire in each home zone h on fire day tþ1

Mt;h;i 6¼0;j 6¼0;r Number of type r resources from home zone h transferring from a CO zone i to another CO zone j on day t; these will become available

for fire suppression on day tþ1

Ut;h;i 6¼0;r Number of type r resources that would return to each home zone h from a CO zone i on day t

Nt;h;i6¼0;r Number of type r resources assigned from home zone h into a CO dispatch zone i on day t; each will become available for fire

suppression on day tþ1

Parameters

at; h;i6¼0;r Number of type r resources from home zone h available for fire suppression in zone i on day t

a0t; h;r Number of type r resources reserved in home zone h on fire day t

lt Preparedness Level (PL) at day t

a00h6¼0;r;lt
Maximum number of type r resources from each CO home zone h that may be dispatched outside h if PL is lt on day t

dt;i6¼0;r Actual demand for type r resources in a CO zone i at day t

pt;j6¼0;r Prediction of next-day demand for type r resources in a CO zone j on day t

ci;j;r Transport cost associated with moving a type r resource from zone j to i, approximated by the distance between zones

b Compounding factor for resource shortages

st;i6¼0; r Cumulative shortage of type r resources in a CO zone i on day t

et;h;i;r Number of type r resources from home zone h that have reached maximum shift length; these resources are sent back to

respective home zones on day t
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and is subject to constraints:

Atþ1;h;i;r ¼ Nt;h;i;r � Ut;h;i;r þ
X

j6¼0

Mt;h;j;i;r �
X

j 6¼0

Mt;h;i;j;r

þ at;h;i;r 8h; i 6¼ 0; r ð2:2Þ

A0
tþ1;h;r ¼

X

i 6¼0

Ut;h;i;r �
X

i 6¼0

Nt;h;i;r þ a0t;h;r 8h; r ð2:3Þ

X

i 6¼0 and h6¼i

Atþ1;h;i;r � ADL� a00h;r;lt 8h 6¼ 0; r ð2:4Þ

X
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Ut;h;i;r þ
X
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Mt;h;i;j;r � at;h;i;r 8h; i 6¼ 0; r ð2:6Þ

X

h

Atþ1;h;i;r � ptþ1;i;r þ 1þ brð Þ � st;i;r 8i 6¼ 0; r ð2:7Þ

Ut;h;i;r �
X

ji

et;h;ji ;r 8h; i 6¼ 0; r ð2:8Þ

Eqn 2.1 is the objective function minimising the total
transport cost on day t. Eqn 2.2 updates the next day’s resource
inventory at zone i, accounting for the transfer of resources in

and out of that zone during day t and the inventory of total
resources on day t. Resources from each home zone are tracked
separately using index h. Any time a resource is released from
fire suppression in dispatch zone i, it returns to its home zone h;

these movements are tracked by Ut,h,i,r. Eqn 2.3 updates the
number of resources kept in home zone h but not assigned to a
fire during day tþ1. Eqn 2.4 is the drawdown constraint used in

this study; it limits the total number of type r resources from
home zone h that can be dispatched out of h depending on PL.
The ADLmultiplier is set to 1 for most test cases. No drawdown

restriction was modelled for the external zone (h ¼ 0). Eqn 2.5
restricts the number of type r resources dispatched to fires from
home zone h during day t to be no more than the number of

resources still residing in h. Eqn 2.6 restricts the total number of
type r resources fromhome zone h transferred out of a zone i to be
no more than the number of resources currently dispatched in i.
Petrovic et al. (2012) suggested that delays in suppression

response may lead to increased disaster severity and thus
greater demand for resources later. To account for this, we
compound the current day’s resource shortage by (1þb) and
add it to the prediction of the next day’s resource demand.
Eqn 2.7 ensures that we fill the next day’s predicted demand
plus the demand created by the compounding of resource

shortages for each zone i. Eqn 2.8 requires that all resources
originally dispatched from home zone h to dispatch zone i that
have been on assignment for longer than the maximum shift

length are sent back to their home zone h from the zones (ji) to
which they are currently assigned. After the model is para-
meterised, we solve it using the MIP solver provided by IBM in
their CPLEX software package, version 12.6. Intensive book-

keeping is implemented after the optimisation model has been

solved to track where all resources are located after they have
moved to their new assignments.
(3) Move forwards a day: day (tþ1) becomes the new day t;

update the resource inventory in all dispatch zones. We use
Eqn 3 to calculate the realised resource shortage st,i,r on
day t:

st;i;r ¼ maxfdt;i;r þ 1þ bð Þ � st�1;i;r �
X

h

at;h;i;r; 0g 8i 6¼ 0; r ð3Þ

After all the parameters are updated, we go back to step (2)
and resolve theMIPmodel for day t to find themost inexpensive

way to transfer resources to meet resource demands for the
next day.

Eqn 3 does not account for any potential benefits of having a

surplus of resources for any zone on any day. In reality, when
extra resources are available they may be used in building
additional fire line, preparing for IA or conducting fuel treat-

ments. However, the benefit of having extra resources is diffi-
cult to estimate and may vary between days. For example, if the
fire activity in a dispatch zone is low after a fire day t, the benefit
of having extra resources on day t might be substantially less

than a day on which fire activity on the following day is high.
Conversely, fire activity may be so extreme that engagement in
fire suppression by ground resources would be deemed unsafe;

thus no extra benefit of additional crews and engines would
potentially be observed. Due to the variable nature of such
benefits, we chose not to include them in this model.

Test cases and results

Our first test case acts as the ‘baseline’ case (named BL14;
14 indicates the maximum shift length), which we compared
with other test cases to examine the effects of a shorter shift
length (the BL04 case), ‘perfect predictions’ of resource

demands (the PP case) and a larger compounding factor for
resource shortages (the b0.5 test case). These effects are quan-
tified by the objective function values (i.e. total transport cost of

engines and crews), the number of resource transfers into CO
from outside the state and the number of resource transfers
between dispatch zones. We also used the model to examine the

effect of drawdown restrictions. Finally, we compared the
model-suggested assignments with records from ROSS.

The baseline test case (BL14)

In our baseline test case (BL14, we examined resource assign-
ments assuming a 14-day shift length, no resource shortage

compounding (b ¼ 0), historical drawdown levels (ADL ¼ 1)
and imperfect next-day demand predictions from the regression
models in Table S1. Table 3 summarises these results.

Reflecting the variation in resource demands each year, the

model suggested substantially different yearly engine (Fig. 3)
and crew (Fig. 4) transfers between dispatch zones. In 2011,
there were no engine transfers between zones because the

demand for engines in each zone was fully met by within-zone
engines. Resource needs were slightly higher in 2010, requiring
two engine transfers from GJC to MTC; however, no out-of-

state engines were required. Engine demand in 2012 was the
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highest of the 4 years studied (Fig. 3); not only did we observe
more engine transfers between dispatch zones, there were also
285 assignments of out-of-state engines, indicating a higher

reliance on out-of-state suppression resources. The largest
number of engine transfers between zones during the 2012 fire
season occurred from PBC to FTC due to the demand from the

High Park Fire, whichwas the second-largest fire by area burned
in recorded CO history at the time. Crew transfers (Fig. 4)
followed similar trends; 2012 and 2013 showed more transfers
than 2010 and 2011. The yearly variation in resource transfers

highlights the challenges of building general, multi-year poli-
cies that guide engine and crew assignments in CO.

A shorter shift length test case (BL04)

For the BL04 test case, all modelled settings except shift length
were the same as the BL14 case; we shortened the 14-day shift
length to a hypothetical 4-day shift length. This change more

than doubled the engine and crew transport costs in 2010 and
2013, and almost doubled the crew transport cost in 2012
(Table 3). For both 2010 and 2013, the shorter shift more than

doubled the engine and crew transport costs; for the other
2 years, shorter shift increased the engine and crew transport
costs by 43–98%. In the BL04 test case, engines and crews were
dispatchedmore frequently from their home bases to fireswithin

their home zones, and the number of requests for out-of-state
resources also increased significantly for most years.

The perfect prediction test case (PP)

We revised the BL14 test case using the assumption that we can
perfectly predict the next day’s crew and engine demands. We
compared this test case with the BL14 test case to examine the

effect of prediction accuracy on our model results. A new Eqn 4
replaced Eqn 2.7 to provide the model with perfect predictions.
Note that resource shortages do not occur in this test case

because the model assigns resources using perfectly predicted
resource demands, and we assume each zone can use unlimited
out-of-state resources to meet its resource demand:

Atþ1;i;r � dtþ1;i;r 8i 6¼ 0; r ð4Þ

Results from the PP test case (summarised in Table 3) show

that perfectly predicting resource demand can decrease the
yearly engine transport cost; for example, when compared with
the BL14 results, PP test case cost results are 9% lower in 2011
and 34% in 2013. The yearly crew transport cost also decreased

with the PP test case, ranging from 14% lower in 2010 to 40%
lower in 2011 when compared with the BL14 results. The
benefits from accurate predictions are also reflected by model

results that consistently use fewer out-of-state resources
(Table 3). For example, in 2012, the number of out-of-state
engine transfers decreased from 285 in the BL14 case to 176 in

the PP case, whereas the number of out-of-state crew transfers
decreased from 90 in the BL14 case to 76 in the PP case. In 2013,

Table 3. A summary of simulation and optimisation model runs using different parameter settings by year simulated

For comparison, the last row for each year shows the actual resource transfers from historical Resource Ordering and Status System (ROSS) records. ‘# out-of-

state dispatch’ is the number of engines or crews called in fromoutsideColorado (CO); ‘# in-zone dispatch’ is the number of engines or crews dispatchedwithin

their home zones; ‘n/a’ is not applicable

Name of test case Prediction method b Shifts (days) Total transport cost # out-of-state dispatch # in-zone dispatch

Engine Crew Engine Crew Engine Crew

Year 2010

BL14 Regression 0 14 307 142 0 0 336 104

BL04 Regression 0 4 658 284 0 0 618 167

PP Perfect 0 14 252 122 0 0 278 87

b0.5 Regression 0.5 14 347 293 0 2 389 115

Actual n/a n/a n/a 1322 769 36 49 265 71

Year 2011

BL14 Regression 0 14 135 193 0 0 159 119

BL04 Regression 0 4 243 311 0 0 279 191

PP Perfect 0 14 123 115 0 0 137 91

b0.5 Regression 0.5 14 216 248 0 0 243 134

Actual n/a n/a n/a 928 1249 21 70 269 87

Year 2012

BL14 Regression 0 14 4388 1703 285 90 437 149

BL04 Regression 0 4 6281 3366 323 211 942 295

PP Perfect 0 14 2881 1339 176 76 393 128

b0.5 Regression 0.5 14 5099 2326 300 134 522 172

Actual n/a n/a n/a 6547 3205 422 223 401 104

Year 2013

BL14 Regression 0 14 1005 1106 0 53 278 69

BL04 Regression 0 4 2277 3064 16 134 527 145

PP Perfect 0 14 714 842 0 43 265 64

b0.5 Regression 0.5 14 1829 1349 34 67 306 79

Actual n/a n/a n/a 3219 2100 184 137 209 61
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the number of out-of-state crew transfers decreased from 53 in
the BL14 case to 43 in the PP case.

The increased resource shortage compounding case (b0.5)

We revised the BL14 test case by setting compounding factor b
to 0.5 to examine the possible effects of delayed suppression on
next-day resource demands due to resource shortages, and we

named this new test case b0.5. This model parameterisation
assumes any resource shortages on one day will make the next
day’s fire situation worse and will thus require 1.5 times the

current day’s shortage of crews (or engines) plus the actual
demands predicted for the next day. Compared with the BL14
test case, setting b to 0.5 increased the yearly engine transport

costs by 13–82% and increased the yearly crew transport costs
by 22–106%. Thesemodel results suggest that the compounding
effects of resource shortages may substantially increase engine

and crew transport costs.

The effect of drawdown levels

We revised the BL14 case by varying the value of the ADL

multiplier between 0 and 3 to test the effect of drawdown
restrictions. There are competing effects of increasing the ADL.

Higher ADLs increase the ability for zones to collaborate, which
may reduce reliance on out-of-state resources. However, in
periods of high resource demand, allowing more resources to

move out of their home zones may cause resource shortages in
those zones. Days with high demand that occur after resources
have been moved out of their home zones may require those
resources to move back or create a need for out-of-state

resources, which may increase transport costs.
The effect of ADL on resource transfers in 2010 and 2011

was minimal; we found no benefit in tightening or loosening

drawdown levels in those years, likely due to lower suppression
resource demands. However, changes in drawdown levels
appear to have larger effects on costs during years with higher

resource demands. We graphed four categories of engine and
crew transport costs against the ADL multiplier for 2012 and
2013 (Fig. 5): the total yearly transport cost for engines or crews,

the yearly transport cost for out-of-state engines or crews, the
yearly transport cost of moving engines or crews between
dispatch zones and the yearly transport cost of assigning engines
or crews to fires within their home zones. Using Fig. 5, we

observed that the total engine and crew transport costs in 2012
and 2013 generally decreased when drawdown restrictions were

2010 CRC DRC FTC GJC MTC PBC 2011 CRC DRC FTC GJC MTC PBC

OUT 0 0 0 0 0 0 0 0 0 0 0 0

CRC 54 0 0 0 0 0 12 0 0 0 0 0

DRC 0 15 0 0 0 0 0 15 0 0 0 0

FTC 0 0 193 0 0 0 0 0 41 0 0 0

GJC 0 0 0 26 2 0 0 0 0 25 0 0

MTC 0 0 0 0 12 0 0 0 0 0 4 0

PBC 0 0 6 0 0 36 0 0 0 0 0 62

2012 2013

OUT 0 66 128 0 0 91 0 0 0 0 0 0

CRC 56 6 16 0 0 0 31 14 0 15 6 0

DRC 0 76 0 34 2 8 7 49 0 1 5 0

FTC 0 0 211 0 0 41 0 13 35 0 8 24

GJC 18 23 0 33 0 0 3 21 0 45 2 1

MTC 0 10 0 0 10 0 3 11 0 8 14 7

PBC 0 17 80 11 0 51 0 123 0 0 0 104

Fig. 3. Modelled engine transfers between dispatch zones from 2010 to 2013 for the baseline test case

(BL14). Row names are zones providing resources; column names are zones requesting resources. OUT,

out-of-state; Craig, CRC; Durango, DRC; Fort Collins, FTC; Grand Junction, GJC; Montrose, MTC;

Pueblo, PBC.
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relaxed (higher ADL values), with some minor fluctuations.

These fluctuations are attributable to the competing effects of
increasing ADL that wementioned earlier.We observed that the
optimal drawdown strategies vary between years; an ADL

multiplier of 3 is optimal for engines in 2012, 1.8 is optimal
for crews in 2012, 0.6 is optimal for engines in 2013, and 0.9 is
optimal for crews in 2013. These test results suggest that there is
no single optimal drawdown level that can minimise resource

transport costs across all years. Drawdown restrictionsmay need
to be set dynamically based on factors beyond PL to better adapt
to changing fire situations. Improved forecasting of longer-term

resource demand potential (e.g. fire season severity) and short-
term fire weather factors (e.g. lightning, wind and fuel dryness)
might assist managers in adjusting drawdown restrictions

efficiently.
Increasing the value of ADL in most cases decreased the

costs from using out-of-state engines and crews because dis-

patch zones in CO were able to share more resources with each
other. We found exceptions in 2012, where the out-of-state
engine and crew transport costs occasionally slightly increased
as the value of ADL increased. Studying the detailed daily

model output suggests that this occurred when PL increased –
for example from 4 to 5 – requiring certain dispatch zones to call

resources back from their out-of-zone assignments (Table 1)

before the end of their 14-day shift. This requires additional out-
of-state resources to be requested to meet the demand gaps left
by the recalled resources. The shortened shift length caused by

the change in PL may be the reason we observe higher out-of-
state engine transport costs in these cases. At higher ADLs, this
likely occurs because more resources are already working out of
their home zones.

Historical engine and crew assignments and transfers

We calculated yearly transport costs and the number of transfers

based on the actual engine and crew assignments into and
between CO dispatch zones from 2010 to 2013 using ROSS
assignment records. We used the same transport cost assump-

tions that our models used so we could compare the model
reported engine and crew transport costs with the transport costs
calculated using historical data.

Certain data gaps exist in the historical ROSS records. For
example, ROSS tracks which fire each resource was assigned to,
but the system does not always record whether the resource was
moved to that fire directly from another fire or from that

resource’s home base. We assumed that if a resource was
dispatched to a fire within 48 h of demobilisation from another

2010 CRC DRC FTC GJC MTC PBC 2011 CRC DRC FTC GJC MTC PBC

OUT 0 0 0 0 0 0 0 0 0 0 0 0

CRC 20 0 2 4 0 0 15 0 0 6 0 0

DRC 1 12 0 0 0 0 0 21 0 0 0 5

FTC 0 0 33 0 0 0 0 0 12 0 0 21

GJC 7 0 0 12 4 0 0 2 0 10 2 4

MTC 0 0 0 6 2 0 0 0 0 2 4 2

PBC 0 0 13 0 0 25 0 0 0 0 0 57

2012 2013

OUT 0 31 10 5 0 44 0 14 1 20 2 16

CRC 19 11 4 13 0 0 9 7 0 10 3 7

DRC 12 26 16 7 0 10 8 15 0 4 12 7

FTC 11 2 55 1 0 36 10 0 13 0 0 9

GJC 13 4 0 11 3 1 7 14 0 4 9 7

MTC 0 0 1 2 7 0 2 13 0 4 2 6

PBC 0 14 23 3 0 31 4 21 0 0 7 26

Fig. 4. Modelled crew transfers between dispatch zones from 2010 to 2013 for the baseline test case

(BL14). OUT, out-of-state; Craig, CRC; Durango, DRC; Fort Collins, FTC; Grand Junction, GJC;

Montrose, MTC; Pueblo, PBC.
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fire, then it moved directly from one fire to another; otherwise, it
returned to its home base first before being sent to the next fire.
This 48-h heuristic was necessary to estimate historical resource

travel costs. Any potential bias from such estimates may need
further study.

The calculated historical engine transport costs were 1.5–7
times higher than the costs reported for the BL14 test case, and

the calculated historical crew transport costs were 1.9–6.5 times
higher than the costs reported for the BL14 test case (Table 3).
ROSS records also showed more out-of-state engine and crew

assignments than the results from the BL14 test case: for
example, 1.5 times as many out-of-state engine assignments
and 2.5 times as many out-of-state crew assignments in 2012

(Table 3). The BL14 solutions did not require any out-of-state
engines and crews in 2010 and 2011. Based on ROSS records,
however, a substantial number of out-of-state engines and crews
were used during both years. The difference was also substantial

in 2013; although the model suggested no need for any out-of-
state engines and only 53 assignments of out-of-state crews, the
ROSS records show we used out-of-state engines 184 times and

crews 137 times.
It is not a surprise that transport costs calculated directly from

the archived ROSS records are higher than the model-suggested
costs: the model-suggested resource assignments are designed

to minimise the daily resource transport cost. However, other
important management restrictions exist that are not included in
the model. For example, workloads between crews or engines

may need to be balanced. Similarly, resource transport may be
impeded by road conditions or weather. Although these man-
agement concerns are not without significance and might be

incorporated into future models, results from this study suggest
that there is potential to further decrease transport costs and
reduce the reliance on out-of-state engines and crews usingmore
efficient assignments of fire suppression resources within CO.
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Fig. 5. Effect of allowable drawdown levels (ADLs) on different types of engine and crew transport costs in 2012 and 2013 using the baseline test

case (BL14).
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Discussion and conclusions

This study developed amodelling approach to examine resource

assignments and the resulting transfers to meet predicted next-
day fire suppression resource demands in CO. An MIP model
was used to optimise the daily response to resource demand over

a fire season by moving resources between dispatch zones. Data
needed to implement this method, such as the daily resource
demand, the number of new ignitions, the PS Outlooks and the

PL, were already collected or predicted daily at local, regional
and national levels to support fire suppression decisions. This
modelling approach allowed us to integrate these data to
determine cost-efficient assignments for engines and crews on a

daily basis.
Test cases using this method allowed us to examine potential

effects of policy changes. Shortening assignment shift lengths

from 14 to 4 days more than doubled the resource transport cost
in some years. Providing accurate predictions of next-day
resource demands substantially decreased the reliance on

out-of-state resources and total resource transport costs. This
suggests that improving the accuracy of suppression resource
demand predictionmodels should be a priority for future studies.

Here, we used regression models to predict next-day resource
demands. Extending predictions beyond a single day could help
further improve resource utilisation decisions, particularly in
developing resource drawdown levels and for prepositioning

decisions. Such improvements in resource demand prediction
models might include tasks such as collecting additional data,
selecting more suitable regression model forms or including

other predictor variables such as human population densities and
values to be protected from wildland fires in each zone.

Resource drawdown restrictions are commonly implemented

by dispatch centres at local, regional and national levels in the
US. Our work represents the first research effort to examine the
effects of such policies. Our test cases demonstrated some of
the potential effects of differing drawdown restriction levels on

resource assignments.We found that relaxing drawdown restric-
tions generally decreased the overall transport cost and the
reliance on out-of-state resources as it allowed formore resource

sharing between dispatch zones. However, if the predictions of
resource demands lack accuracy, moving resources more fre-
quently between zones can also increase the overall transport

cost. Test results showed drawdown levels that minimise trans-
port costs could vary substantially between fire seasons and
resource types. Determining a single optimal drawdown level

for each PL may not be efficient. Improved longer-term predic-
tions of resource demands may better inform decisions regarding
allowances for out-of-zone resource dispatching.

In this paper, we assumed that resource assignments were

driven by resource demands in each dispatch zone and were
restricted by factors such as resource availability, assignment
shift length and drawdown levels. We also assumed the

observed engine and crew demands in a fire day in each zone
were the actual suppression demands. This may not always
be accurate: for example, risk-averse managers may order more

resources than they actually expect to need (Maguire and Alb-
right 2005). If this does occur, our model-estimated transport
cost would be higher than necessary. However, determining the
difference between the observed and actual demands is

challenging. Surveys or field measurement may be required to
quantify this difference. We also assumed that the maximum
numbers of engines and crews that have been dispatched in each

zone during a 4-year period represent the numbers of engines
and crews available in that zone. Future studies may be needed
to account for the variation of resource availability across a fire

season (e.g. effects of seasonal firefighters). We used 4 years of
ROSS records to derive the drawdown restrictions by PL in each
zone. An alternative method would entail collection of zone-

specific drawdown restrictions by contacting fire managers
directly. Another potential enhancement could involve model-
ling the influence of drawdown in preventing fire escapes, which
might be achieved by connecting our model to existing

IA dispatch models or employing standard IA response rules
(e.g. Haight and Fried 2007).

The approach presented here models crews and engines

independently without allowing any substitution between the
two resource types. In reality, sending an engine to fill a crew
request might be preferable to sending no resources at all. Some

ROSS records demonstrate historical unfilled crew requests that
are followed immediately by filled engine requests, indicating
that such substitutions may be occurring in the field. The model

could be enhanced to include resource substitutions if additional
studies could quantify the rate of substitution that occurs
between crews and engines under differing fire situations, fuel
types and topographic conditions.

In this work, we produced a system model based on archived
resource assignment data from ROSS to help fire managers
study fire suppression resource assignment, transfer and draw-

down policies. Implementing such a system could help simplify
and standardise dispatching procedures. This approach is also
promising for national-scale analyses as a tool to study national

level resource assignments, including examining inter-state and
regional collaborations.
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Section S1. Regression models to predict next-day engine and crew demands in each of 

the CO dispatch zones  

The archived 2010-2013 ROSS data for daily engine and crew assignments are 

summarised in Figs S1 and S2. We first tested whether these daily engine and crew demands 

in each zone were stationary using the Dickey–Fuller test (Said and Dickey 1984). Test results 

showed that both the engine and crew demands in CRC, GJC and MTC were stationary, while 

the demands in DRC, FTC and PBC were non-stationary (Table S1). For the three zones with 

stationary resource demand data, we used regression models to directly predict the engine or 

crew demand at day t in each zone. For the other three zones with non-stationary resource 

demands, we built a first-difference model for each dispatch zone to predict the change in 

engine and crew demands from day (t – 1) to day t in that zone. We also evaluated the goodness 

of fit of those models using an out-of-sample R2. To do this, we divided the four years into two 

sub-periods. The first sub-period was from 2010 to 2012, which was used for model fitting. 

The second sub-period consists of data from 2013, which was used to evaluate the forecasting 

performance of the fitted models by calculating the R2 values. The following independent 

variables were initially tested for all models: 
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1) The one-day lagged number of engine or crew demands in each zone at day (t – 1). The 

coefficients of these variables were set to 1 if the first-difference models were used.   

2) The change in engine or crew demands in each zone from day (t – 2) to (t – 1). The 

coefficients of these variables would not be zero if the first-difference models were used.  

3) The number of new fires in day (t – 1).  

4) A binary dummy variable indicating if the one-day PS outlook for day t was greater than 

or equal to 2. Because we were interested in one-day predictions of resource demands, we 

only used the one-day PS forecast. If the predicted fuel moisture for day t is low (the dummy 

variable is set to 1), we would expect higher resource demands. 

5) A binary variable tracking whether there have been higher total resource demands (the total 

count of all engines, crews, air-tankers, helicopters and fire teams) from day (t – 2) to (t – 

1). We used this binary variable to approximate the overall trend of fire suppression 

resource demands from day (t – 2) to (t – 1).  

Positive coefficients were expected from all independent variables. After testing these 

variables using regression analyses, only independent variables with P-values ≤ 0.05 and 

having positive coefficients were kept in the prediction models. All model coefficients are 

displayed in Table S2 and S3. 

We used R (R Foundation for Statistical Computing, Vienna, Austria, see http://www.R-

project.org/, accessed 25 March 2016) to conduct the Durbin–Watson test (DW test; in Table 

S1) to check for serial correlation in prediction residuals for all of the prediction models in 

Table S2 and S3. Although Durbin’s H test would be less biased than the DW test, we found 

the H-statistic is not well-defined for some of the models estimated in this study. The DW test 

did not reject the hypothesis that no autocorrelation is found in the prediction residuals. 

Examining the prediction residuals (Fig. S3) with the daily resource demands (Figs S1 and S2) 

showed that prediction residuals are likely heteroscedastic, larger prediction residuals often 
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occur during days with larger resource demands. Although the prediction errors do not cause 

bias in the estimation of the coefficients, heteroscedasticity could lead to overestimation of the 

goodness of fit for those models. Additional predictors and data could be added to improve 

these models during future studies. 

For the in-sample tests using all data from 2010 to 2013, the R2 values ranged from 0.8 to 

0.97 for the engine demand prediction models, and from 0.81 to 0.96 for the crew demand 

prediction models (Table S1). We conducted out-of-sample tests by fitting the coefficients of 

the engine and crew demand models using historical data between 2010 and 2012, and then 

testing those models using the 2013 data. Out-of-sample tests gave us a range of R2 values 

between 0.37 and 0.96 for engine demand predictions, and between 0.7 and 0.97 for crew 

demand predictions (Table S1). The lowest out-of-sample prediction accuracy was from the 

model predicting 2013 daily engine demand for FTC, potentially due to the model overfitting 

engine demand between 2010 and 2012. Including the 2013 data when fitting the final model 

should help with some of the overfitting issues. In the future, additional out-of-sample tests 

could also be conducted with ROSS data from 2014 and 2015 for further model improvement.  

Each of the wildfires in our ROSS dataset only lasted a small portion of a fire season. We 

estimated a random effects version of a pooled data model in this study. We did not estimate 

fire-level (cross-sectional) fixed effects or day-level (time) fixed effects in these models. 

Exploration of more advanced models to fit those pooled data could be interesting future 

research.  
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Table S1. Dickey–Fuller tests (DF tests) show stationary engine and crew demands in 

Craig (CRC), Grand Junction (GJC) and Montrose (MTC), and nonstationary 

demands in the other three zones (Durango (DRC), Fort Collins (FTC), Pueblo (PBC)) 

The Durbin–Watson test (DW test) exams the autocorrelation of prediction residuals from 

either the first difference models for nonstationary demand data or the direct 1-day lagged 

prediction model for stationary data. The out-of-sample R2 is used to evaluate the structure of 

each model; for these tests, model coefficients are fit using the 2010 to 2012 data, and each 

model is tested by only using the 2013 data. (S) stationary data; (N) nonstationary data 

Zone and Res. type DF test In-sample R2 DW test Out-of-sample R2 

CRC     

 Engine –5.97 (S) 0.80 2.11 0.83 

 Crew –5.40 (S) 0.85 2.15 0.86 

DRC     

 Engine –2.36 (N) 0.97 1.97 0.96 

 Crew –2.98 (N) 0.95 2.02 0.97 

FTC     

 Engine –2.42 (N) 0.97 2.18 0.37 

 Crew –3.10 (N) 0.96 2.08 0.70 

GJC     

 Engine –5.54 (S) 0.84 2.08 0.78 

 Crew –5.82 (S) 0.81 2.00 0.82 

MTC     

 Engine –5.12 (S) 0.85 2.00 0.86 

 Crew –4.84 (S) 0.86 1.88 0.87 

PBC     

 Engine –3.13 (N) 0.95 2.04 0.93 

 Crew –3.05 (N) 0.95 2.12 0.94 
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Table S2. Coefficients of the linear regression models fit using 2010 to 2013 data to 

predict the next day engine demands in each zone (Craig (CRC); Durango (DRC); Fort 

Collins (FTC); Grand Junction (GJC); Montrose (MTC); Pueblo (PBC)) 

The number of observations includes only fire days from 2010 to 2013. The numbers inside 

parentheses are the standard errors for the corresponding coefficients. The coefficient for 

‘Engine demands (t – 1)’ is set to 1 when the first-difference model is used.  Probabilities are 

significant at: *,  P < 0.01; **,  P < 0.05; ***, P < 0.001
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Table S3. Coefficients of the linear regression models fit using 2010 to 2013 data to 

predict the next day crew demands in each zone (Craig (CRC); Durango (DRC); Fort 

Collins (FTC); Grand Junction (GJC); Montrose (MTC); Pueblo (PBC)) 

The number of observations includes only fire days from 2010 to 2013. The numbers 

inside parentheses are the standard errors for the corresponding coefficients. The coefficient 

for ‘Crew demand (t – 1)’ is set to 1 when the first-difference model is used. Probabilities are 

significant at: *,  P < 0.01; **,  P < 0.05; ***, P < 0.001 
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Fig. S1. The daily engine demands in each of the dispatch zones from 2010 to 2013. Each 

row represents one dispatch zone (Craig (CRC); Durango (DRC); Fort Collins (FTC); Grand 

Junction (GJC); Montrose (MTC); Pueblo (PBC)). Each column represents a year from 2010 

to 2013. The y-axis represents the number of engines demanded; the x-axis represents the day 

of year. 
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Fig. S2. The daily crew demands in each of the dispatch zones from 2010 to 2013. Each row 

represents one dispatch zone (Craig (CRC); Durango (DRC); Fort Collins (FTC); Grand 

Junction (GJC); Montrose (MTC); Pueblo (PBC)). Each column represents one year from 2010 

to 2013. The y-axis represents the number of crews demanded; the x-axis represents the day of 

year. 
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Fig. S3. The residuals for each of the prediction models. Each row represents one dispatch 

zone (Craig (CRC); Durango (DRC); Fort Collins (FTC); Grand Junction (GJC); Montrose 

(MTC); Pueblo (PBC)). The left column shows the residuals of engine demand prediction 

following the sequence of days during the fire seasons from 2010 to 2013 (days outside of fire 

seasons are omitted); the right column includes the residuals from crew predictions.   
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